Synthesis of 1,2-azaphospholanes containing an amino acid fragment

O. V. Bykhovskaya, I. M. Aladzheva,* D. I. Lobanov, P. V. Petrovskii, K. A. Lyssenko, I. V. Fedyanin, and T. A. Mastryukova

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation.
Fax: +7 (495) 135 5085. E-mail: shipov@ineos.ac.ru

2-Oxo-1,2-azaphospholanes and 1,2-azaphospholanium salts containing an amino acid fragment were synthesized by intramolecular P-alkylation of N-3-chloropropyl-substituted tricoordinate phosphorus amides. Hydrolysis of 2-oxo-1,2-azaphospholanes at the P—N bond gives rise to γ -aminopropylphosphonic acid derivatives.

Key words: P-alkylation, Arbuzov rearrangement, 2-oxo-1,2-azaphospholanes, 1,2-azaphospholanium salts, diastereomers, hydrolysis, γ-aminopropylphosphonic acid derivatives, NMR spectroscopy, X-ray diffraction study.

Earlier, we have developed a general approach to the synthesis of poorly studied 1,2-azaphospholanes, which are difficult to prepare, based on intramolecular N-alkylation of ω -haloalkyl-substituted iminophosphoryl compounds I. More recently, a simpler and more convenient procedure has been proposed for the synthesis of 1,2-azaphospholanes based on intramolecular P-alkylation of N- ω -haloalkyl-substituted tricoordinate phosphorus amides II.

$$R^1R^2P \stackrel{R^3}{\sim} (CH_2)_n Hal$$
 $R^1R^2PN \stackrel{R^3}{\sim} (CH_2)_n Hal$ II

In the present study, we used this method to synthesize new types of 1,2-azaphospholanes containing an amino acid fragment with the aim of preparing potent biologically active compounds.

The reactions of tricoordinate phosphorus acid chlorides ${\bf 1a-c}$ with N-3-chloropropylglycine ethyl ester (${\bf 2a}$) or DL-N-3-chloropropylalanine ethyl ester (${\bf 2b}$) in the presence of triethylamine in a 2 : 1 C₆H₆—CHCl₃ solvent mixture or in MeCN produced N-3-chloropropyl-substituted amides ${\bf 3a-e}$ (Scheme 1), whose signals were observed in the 31 P NMR spectra of the reaction mixtures (see the Experimental section). After refluxing of the reaction mixture for 1—4 h, amides 3 were transformed into 1,2-azaphospholanes 4 and 5 as a result of intramolecular P-alkylation.

The P-alkylation of amidophosphites **3a—c** containing the ethoxy substituent at the phosphorus atom occurs as the Arbuzov rearrangement. Under the reaction conditions, the intermediate quasiphosphonium salt generated in the first step undergoes dealkylation to give 2-oxo-1,2-

azaphospholanes **4a—c**. Intramolecular P-alkylation of aminophosphines **3d,e** containing two phenyl substituents at the phosphorus atom afforded 1,2-azaphospholanium chlorides **5a,b**, from which the corresponding perchlorates **6a,b** were generated by the anion exchange reaction. 2-Oxo-1,2-azaphospholanes **4a—c** and perchlorate **6b** are nondistillable oily liquids, which were purified by column chromatography. 1,2-Azaphospholanium salts **5a** and **6a** were purified by recrystallization (Table 1).

The compositions and structures of compounds **4–6** were confirmed by elemental analysis, IR spectroscopy, and ¹H, ³¹P, and ¹³C NMR spectroscopy (Tables 1–3). The IR spectra of all compounds show an absorption band of the C=O group at 1730–1740 cm⁻¹. The IR spectra of 2-oxo-1,2-azaphospholanes **4a–c** have also an intense absorption band of the P=O group at 1200–1230 cm⁻¹. According to the NMR spectra, alanine derivatives **4b,c** were prepared as mixtures of two diastereomers **A** and **B** in a ratio of 1 : 1.* Diastereomers of azaphospholane **4b** were separated by column chromatography on SiO₂.

2-Oxo-1,2-azaphospholanes **4a,b** are easily hydrolyzed at the P—N bond of the ring at 20 °C in the presence of traces of moisture to give compounds **7a,b** (Scheme 2), which are derivatives not only of γ -aminophosphonic acid but also of α -aminocarboxylic acid and can possess useful biological properties. ^{3,4}

Hydrolysis products **7a,b** were isolated and characterized (see Tables 1—3) as crystalline compounds. Their IR spectra show absorption bands characteristic of the C=O group along with broad intense absorption bands at

^{*} The diastereomer, whose signal in the ³¹P—{¹H} NMR spectrum is observed at lower field, is denoted as **A**.

Scheme 1

 $R^3 = H$ (2a, 5a, 6a); Me (2b, 5b, 6b)

Scheme 2

 $R^1 = EtO, R^3 = H(a); EtO, Me(b)$

3700—2000 cm⁻¹ belonging to the NH_2^+ group and absorption bands at 1200-1000 cm⁻¹ assigned to vibrations of the P—O—C and PO_2^- groups (see Table 2), which is evidence that these compounds exist as zwitterions.^{5–7} In the ¹H NMR spectra of the hydrolysis products in CDCl₃, the signal for the proton of the NH group is absent, and a very broad singlet for the protons of the NH_2^+ group is observed at δ 10—11 ($\nu \approx 1000$ Hz (**7a**) and 550 Hz (**7b**)).

X-ray diffraction study demonstrated that compound 7a crystallizes in the zwitterionic form with a chloroform solvate molecule (Table 4, Fig. 1). The phosphorus atom is characterized by a distorted tetrahedral coordination. The O(2)-P(1)-O(1) bond angle is increased to $118.2(1)^{\circ}$ and is synclinal with respect to the C(1)C(2)C(3)N(1)C(4)C(5) fragment (the C(3)-C(2)-C(1)-P(1) torsion angle is 87.3°). The PO_2OEt group is arranged with respect to the alkylene chain in such a way that the O(1) and O(3) atoms are synclinal, whereas the O(2) atom is antiperiplanar with respect to the C(2) atom.

The P(1)—O(1) and P(1)—O(2) bonds in **7a** are similar in length. A slight elongation of the P(1)—O(2) bond (1.503(2) Å) compared to the P(1)—O(1) bond (1.486(2) Å) is, apparently, associated with the difference in both the strength and number of H bonds formed by the oxygen atoms. Although both the O(1) and O(2) atoms are involved in intermolecular N—H...O hydrogen bonds

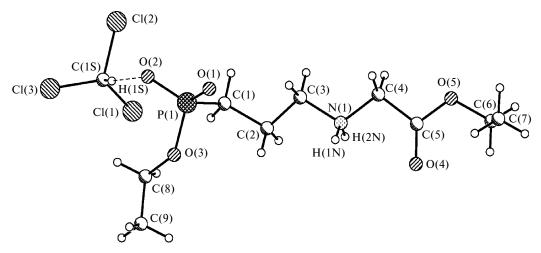


Fig. 1. Crystal structure of compound 7a · CHCl₃.

Table 1. Yields, melting points, and elemental analysis data for 2-oxo-1,2-azaphospholanes **4**, 1,2-azaphospholanium salts **5** and **6**, and hydrolysis products **7**

Com- pound	Yield ^a (%)	M.p./°C (solvent)	Found (%) Calculated				Molecular formula
			C	Н	N	P	
4a	60.0 ^b (84)	_	46.04	7.56	6.03	13.14	C ₉ H ₁₈ NO ₄ P
			45.95	7.66	5.95	13.19	
4b	68.0^b (88)	_	<u>48.69</u>	<u>8.01</u>	<u>5.64</u>	<u>11.95</u>	$C_{10}H_{20}NO_4P$
			48.19	8.03	5.62	12.45	
4c	$58.8^b (76)$	_	<u>52.25</u>	<u>8.98</u>	<u>10.03</u>	<u>11.17</u>	$C_{12}H_{25}N_2O_3P$
			52.17	9.06	10.14	11.23	
$5a^c$	38.3 (87)	160-161 (decomp.)	<u>62.64</u>	<u>6.40</u>	<u>3.70</u>	<u>8.42</u>	$C_{19}H_{23}CINO_2P$
		(MeCN-AcOEt)	62.72	6.37	3.85	8.51	
6a ^d	58.6	120-121 (decomp.)	<u>53.38</u>	<u>5.30</u>	<u>3.26</u>	<u>7.44</u>	$C_{19}H_{23}CINO_6P$
		$(CH_2Cl_2-AcOEt)$	53.34	5.42	3.27	7.24	
6b	47.7^{b}	_	<u>53.79</u>	<u>5.98</u>	<u>3.01</u>	<u>7.07</u>	$C_{20}H_{25}CINO_6P$
			54.36	5.66	3.17	7.02	
7a	78	157—158	<u>42.52</u>	<u>8.01</u>	<u>5.41</u>	<u>12.08</u>	$C_9H_{20}NO_5P$
	(quantitative)	(MeCN-AcOEt)	42.69	7.91	5.53	12.25	
7b	88	126—128	<u>44.89</u>	<u>8.21</u>	<u>5.21</u>	<u>11.63</u>	$C_{10}H_{22}NO_5P$
	(quantitative)	(MeCN—AcOEt)	44.94	8.23	5.24	11.61	

^a The yield of the pure product; the yield of the product, which was determined from the ³¹P NMR spectrum of the reaction mixture, is given in parentheses.

(O...N, 2.677(2) and 2.720(2) Å, respectively), the O(2) atom forms also a strong H bond with the chloroform molecule (H(1S)...O(2), 1.97 Å; C(1S)...O(2), 3.031(2) Å; C(1S)—H(1S)...O(2), 166°). In the crystal structure, the molecules are linked to each other by N—H...O hydrogen bonds to form layers parallel to the crystallographic bc plane, and the chloroform solvate molecules form a hydrophilic coat.

Experimental

The reactions were carried out under dry argon using anhydrous solvents. The NMR spectra were recorded on a Bruker AMX-400 instrument with the use of the signal from the residual protons of a deuterated solvent (CDCl₃) as the internal standard (¹H and ¹³C) and 85% H₃PO₄ as the external standard (³¹P). The IR spectra were measured on Magna IR 750 Nicolet and UR-20 instruments in a thin film or in KBr pellets. The syntheses were carried out with the use of the commercial reagents (EtO)₂PCl, Ph₂PCl (Aldrich), and Cl(CH₂)₃NH₂·HCl (Acros). Column chromatography was performed on SiO₂ (Aldrich, 130–270 mesh) using gradient elution with a hexane—acetone or CHCl₃—MeOH mixture. The starting (EtO)(Et₂N)PCl was synthesized according to a known procedure.⁸

Ethyl N-3-chloropropylaminoacetate (2a). A solution of $Cl(CH_2)_3NH_2 \cdot HCl$ (3.00 g, 22.8 mmol), Et_3N (2.3 g, 22.8 mmol), and $BrCH_2COOEt$ (1.90 g, 11.4 mmol) in EtOH (20 mL) was stirred at 20 °C for 3 days. The precipitate was

filtered off, and the filtrate was concentrated to dryness. Benzene (20 mL) and ice water (20 mL) were added to the residue. The benzene layer was dried with Na₂SO₄, the solvent was removed *in vacuo*, and the oily residue was purified by column chromatography (hexane—acetone as the eluent; a gradient from 98 : 2 to 90 : 10). The yield was 1.12 g (54.6%). Found (%): C, 46.72; H, 8.00; N, 7.90; Cl, 19.65. C₇H₁₄CINO₂. Calculated (%): C, 46.80; H, 7.80; N, 7.80; Cl, 19.78. IR (thin film), v/cm⁻¹: 1737 (C=O); 3340 (NH). ¹H NMR (CDCl₃), δ : 1.21 (t, 3 H, CH₃, ${}^3J_{\rm H,H}$ = 7.2 Hz); 1.55 (br.s, 1 H, NH); 1.89 (tt, 2 H, CH₂CH₂CH₂, ${}^3J_{\rm H,H}$ = 6.8 Hz); 2.72 (t, 2 H, CH₂CL₂N, ${}^3J_{\rm H,H}$ = 6.8 Hz); 3.35 (s, 2 H, CH₂CO); 3.58 (t, 2 H, CH₂Cl, ${}^3J_{\rm H,H}$ = 6.8 Hz); 4.12 (q, 2 H, CH₂O, ${}^3J_{\rm H,H}$ = 7.2 Hz).

Ethyl DL-*N*-3-chloropropyl-2-aminopropionate (2b) was synthesized analogously from Cl(CH₂)₃NH₂·HCl (3.00 g, 22.8 mmol), Et₃N (2.30 g, 22.8 mmol), and DL-BrCH(Me)COOEt (2.10 g, 11.4 mmol). Column chromatography afforded an oily product in a yield of 1.45 g (65.5%). Found (%): C, 49.59; H, 8.38; N, 7.42. C₈H₁₆ClNO₂. Calculated (%): C, 49.61; H, 8.27; N, 7.24. IR (thin layer), ν/cm⁻¹: 1725 (C=O); 3330 (NH). ¹H NMR (CDCl₃), δ: 1.18–1.28 (m, 6 H, CH₃CH₂ + CH₃CH); 1.45 (br.s, 1 H, NH); 1.81–1.93 (m, 2 H, CH₂CH₂CH₂); 2.52–2.61 and 2.67–2.76 (both m, 2 H, CH_αH_βN); 3.22–3.30 (m, 1 H, CHCH₃); 3.52–3.62 (m, 2 H, CH₂Cl); 4.12 (q, 2 H, CH₂O, ${}^3J_{\text{H,H}}$ = 7.2 Hz).

2-Ethoxy-1-ethoxycarbonylmethyl-2-oxo-1,2 λ^5 -azaphospholane (4a). A solution of (EtO)₂PCl (0.73 g, 4.6 mmol) in MeCN (5 mL) was added dropwise with stirring to a solution of 2a (1.0 g, 5.6 mmol) and Et₃N (0.57 g, 5.6 mmol) in MeCN (15 mL) cooled to -5 °C. After completion of stirring, the

^b Purified by column chromatography.

^c Found (%): Cl, 9.68. Calculated (%): Cl, 9.75.

^d Found (%): Cl, 8.38. Calculated (%): Cl, 8.29.

Table 2. ³¹P and ¹³C NMR spectra of compounds 4—7 in CDCl₃

Com-	NMR, $\delta (J_{\text{C,P}}/\text{Hz})$				
pound	³¹ P—{ ¹ H}	¹³ C			
4a	46.8	13.41 (s, $\underline{C}H_3CH_2OC$); 15.73 (d, $\underline{C}H_3CH_2OP$, $J = 6.2$); 18.61 (d, $\underline{C}H_2\underline{C}H_2CH_2$, $J = 1.8$);			
		20.02 (d, CH_2P , $J = 120.7$); 45.09 (d, $\underline{C}H_2CO$, $J = 4.4$); 46.46 (d, $NCH_{2,cycle}$, $J = 24.2$);			
		$60.06 \text{ (s, } \underline{\text{CH}}_2\text{OC)}; 60.40 \text{ (d, } \text{CH}_2\text{OP}, J = 6.5); 169.5 \text{ (d, } \text{CO}, J = 2.9)$			
4b (A)	47.3	13.89 (s, $\underline{\text{CH}}_3\text{CH}_2\text{OC}$); 16.06 (d, $\underline{\text{CH}}_3\text{CH}$, $J = 2.8$); 16.27 (d, $\underline{\text{CH}}_3\text{CH}_2\text{OP}$, $J = 6.0$);			
		19.30 (d, CH_2CH_2 , $J = 2.4$); 21.02 (d, CH_2P , $J = 120.0$); 42.43 (d, $NCH_{2,cycle}$, $J = 24.4$);			
		51.08 (d, CH, $J = 4.0$); 60.63 (s, $\underline{C}H_2OC$); 61.12 (d, CH_2OP , $J = 6.0$); 172.40 (d, CO , $J = 3.5$)			
4b (B)	46.4	13.89 (s, $\underline{\text{CH}}_3\text{CH}_2\text{OC}$); 15.78 (d, $\underline{\text{CH}}_3\text{CH}$, $J = 2.8$); 16.21 (d, $\underline{\text{CH}}_3\text{CH}_2\text{OP}$, $J = 5.2$);			
		19.40 (d, CH_2CH_2 , $J = 2.4$); 20.88 (d, CH_2P , $J = 120.4$); 41.81 (d, $NCH_{2,cycle}$, $J = 24.9$);			
		50.28 (d, CH, $J = 4.4$); 60.52 (s, $\underline{\text{CH}}_2\text{OC}$); 61.50 (d, CH ₂ OP, $J = 5.6$); 172.60 (d, CO, $J = 3.5$)			
4c	45.9 (A),	14.56, 14.64 (both s, <u>C</u> H ₃ CH ₂ O); 16.53 (s, <u>C</u> H ₃ CH); 17.02 (s, <u>C</u> H ₃ CH ₂ N); 21.12, 21.44 (both s,			
	45.3 (B)	$CH_2CH_2CH_2$); 23.03, 23.23 (both d, CH_2P , $J = 107.7$); 38.54, 38.72 (both d, CH_3CH_2N , $J = 4.7$);			
		42.13, 44.16 (both d, NCH _{2,cycle} , $J = 23.7$, $J = 22.8$); 49.99, 51.10 (both s, CH);			
-	60.0	61.25, 61.32 (both s, CH ₂ O); 173.5 (s, CO)			
5a	60.0	13.64 (s, CH ₃); 21.67 (s, CH ₂ CH ₂ CH ₂); 26.50 (d, CH ₂ P, $J = 65.1$); 47.20 (d, CH ₂ CO, $J = 4.4$);			
		52.88 (d, NCH _{2,cycle} , J = 15.6); 61.48 (s, CH ₂ O); 119.10 (d, P—C(Ph), J = 95.21); 129.90 (d,			
<i>(</i> -	50.2	m-C(Ph), $J = 13.3$); 133.20 (d, o -C(Ph), $J = 12.1$); 135.10 (d, p -C(Ph), $J = 2.8$); 168.60 (s, CO)			
6a	59.2	13.80 (s, CH ₃); 21.63 (s, CH ₂ CH ₂ CH ₂); 26.11 (d, CH ₂ P, $J = 66.0$); 47.06 (d, CH ₂ CO, $J = 3.9$);			
		52.80 (d, NCH _{2,cycle} , $J = 15.8$); 61.73 (s, CH ₂ O); 119.20 (d, P—C(Ph), $J = 95.4$);			
		130.10 (d, m -C(Ph), J = 13.5); 133.20 (d, o -C(Ph), J = 11.9); 135.40 (d, p -C(Ph), J = 2.8);			
6b	57.2	168.60 (d, CO, $J = 3.3$) 12.78 (s, CH_3CH_3); 16.87 (s, CH_3CH_3); 21.06 (s, $CH_2CH_2CH_3$); 25.18 (d, CH_2P , $J = 66.3$);			
OD	37.2	47.66 (d, NCH ₂ , $J = 16.1$); 52.13 (s, CH); 61.34 (s, CH ₂ O); 119.3 (d, P—C(Ph), $J = 97.2$);			
		119.40 (d, P—C(Ph), $J = 94.8$); 129.80 (d, m -C(Ph), $J = 13.5$); 132.90 (d, o -C(Ph), $J = 11.8$);			
		119.40 (d, P – C(FII), J – 94.8), 129.80 (d, m – C(FII), J – 13.3), 132.90 (d, o – C(FII), J – 11.8), 135.00 (d, p – C(Ph), J = 2.8); 170.50 (d, CO, J = 1.4)			
7a	24.3	13.60 (d, p -C(1 h), J = 2.8), 170.50 (d, CO, J = 1.4) 13.60 (s, CH_2CH_2OC); 16.40 (d, CH_3CH_2OP , J = 6.3); 20.58 (d, $CH_2CH_2CH_2$, J = 4.0);			
1 a	24.3	24.91 (d, CH_2P , $J = 135.0$); 47.30 (s, $\underline{C}H_2CO$); 48.91 (d, $CH_2\underline{C}H_2N$, $J = 10.0$);			
		24.91 (d, CH_2OP , $J = 5.5$); 62.60 (s, CH_2OO); 167.10 (s, CO)			
7b	23.1	13.61 (s, CH_2OF , $J = 5.5$), 02.00 (s, CH_2OC), 107.10 (s, CO) 13.61 (s, CH_3CH_2OC); 14.47 (s, $CH_3CH_3CH_3CH_2OP$, $J = 6.4$); 20.88 (d, $CH_2CH_2CH_2$),			
<i>,</i> 0	23.1				
		J = 4.0); 25.01 (d, CH ₂ P, $J = 135.0$); 47.28 (d, CH ₂ CH ₂ N, $J = 11.0$); 55.45 (s, CH); 60.19 (d, CH ₂ OP, $J = 5.4$); 62.77 (s, CH ₂ OC); 170.00 (s, CO)			

reaction mixture contained 84% of amide **3a** (^{31}P NMR spectroscopic data), δ_P 146.4.* The reaction mixture was refluxed for 2 h and cooled. The precipitate of $Et_3N \cdot HCl$ was filtered off, MeCN was removed *in vacuo*, benzene (20 mL) was added to the filtrate, the precipitate of $Et_3N \cdot HCl$ was filtered off, benzene was removed *in vacuo*, and the oily product was purified by chromatography (hexane—acetone as the eluent; a gradient from 98 : 2 to 45 : 55). Compound **4a** was isolated in a yield of 0.65 g.

2-Ethoxy-1-(1-ethoxycarbonylethyl)-2-oxo-1,2λ⁵-aza-phospholane (4b). A solution of (EtO)₂PCl (1.25 g, 8.0 mmol) in a 2 : 1 C_6H_6 —CHCl₃ mixture (5 mL) was added dropwise with stirring to a solution of **2b** (1.55 g, 8.0 mmol) and Et₃N (0.96 g, 9.5 mmol) in the same solvent mixture (25 mL) at -5 °C. The reaction mixture contained 89% of amide **3b**, δ_P 148.4.* Then the reaction mixture was refluxed for 4 h, C_6H_6 (15 mL) and ice water (15 mL) were added, the benzene layer was separated and washed with ice water, the aqueous layer was extracted with C_6H_6 , and the benzene extracts were dried with Na₂SO₄. After removal of C_6H_6 , the residue was chromatographed on a column (hexane—acetone as the eluent; a gradient from 98 : 2 to 40 : 60). A viscous oily product was obtained as a mixture of two diastereomers of **4b** in a yield of 1.35 g. Diastereomers **A** and **B**

were isolated by additional chromatography of the reaction mixture using the same solvents.

2-Diethylamino-1-(1-ethoxycarbonylethyl)-2-oxo-1,2\lambda^5-azaphospholane (4c) was synthesized analogously to **4b** from **2b** (0.84 g, 4.3 mmol), Et₃N (0.61 g, 6.0 mmol), and (EtO)(Et₂N)PCl (0.79 g, 4.3 mmol) in a 2 : 1 C₆H₆—CHCl₃ mixture (15 mL). Before heating, the reaction mixture contained 80% of amide **3c**, δ_P 137.5 and 137.9 (two diastereomers).* Compound **4c** was isolated as a mixture of two diastereomers in a yield of 0.70 g by column chromatography (CHCl₃—MeOH as the eluent; a gradient from 100 : 1 to 100 : 8).

1-Ethoxycarbonylmethyl-2,2-diphenyl-1,2 λ^4 -azaphospholanium chloride (5a) was synthesized analogously to 4b from 2a (1.02 g, 5.7 mmol), Et₃N (0.66 g, 6.5 mmol), and Ph₂PCl (1.17 g, 5.3 mmol) in a 2 : 1 C₆H₆—CHCl₃ mixture (25 mL). Before heating, the reaction mixture contained 88% of amide 3d, δ_P 65.0.** After refluxing for 1 h, the precipitate of Et₃N·HCl was filtered off, and the solvent was removed *in vacuo*. After recrystallization, chloride 5a was isolated in a yield of 0.74 g.

1-Ethoxycarbonylmethyl-2,2-diphenyl-1,2 λ^4 -azaphospholanium perchlorate (6a). A solution of NaClO₄ (0.73 g, 6.0 mmol)

^{*} For (EtO)₂PNMe₂, δ_P 144.7.9

^{*} For (EtO)P(NEt₂)₂, δ_P 133.0.¹⁰

^{**} For Ph₂PNEt₂, δ_P 60.8.¹¹

Table 3. IR and ¹H NMR spectra (CDCl₃) of compounds 4-7

Com- pound	, <u>,</u>	1 H NMR, δ (J /Hz)
4 a	1215 (br.s, P=O), 1744 (C=O)	1.23, 1.25 (both t, 6 H, $C_{H_3}CH_2OP + C_{H_3}CH_2OC$, ${}^3J_{H,H} = 7.2$); 1.65–1.82 (m, 2 H, $CH_2CH_2CH_2$); 1.97–2.16 (m, 2 H, PCH_2); 3.00–3.09, 3.20–3.28 (both m, 1 H each, PCH_2CH_2); 3.52 (dd, 1 H, PCH_2CH_2); 3.00–3.09, 3.20–3.28 (both m, 1 H each, PCH_2CH_2); PCH_2CH_2 0, PCH_2CH_2 1, PCH_2CH_2 2, 3.86 (dd, 1 H, PCH_2CH_2 2, 3.86 (dd, 1 H, PCH_2CH_2 3); 3.86 (dd, 1 H, PCH_2CH_2 4); 3.86 (dd, 1
4b	1220 (br.s,	1.14–1.21 (m, 6 H, $C\underline{H}_3CH_2OP + C\underline{H}_3CH_2OC$); 1.35 (d, 3 H, $C\underline{H}_3CH$, ${}^3J_{H,H} = 7.2$);
(A)	P=O), 1746 (C=O)	$1.60-1.72$ (m, 2 H, $CH_2CH_2CH_2$); $1.84-2.02$ (m, 2 H, PCH_2); $2.98-3.16$ (m, 2 H, $NCH_{2,cycle}$); $3.87-3.98$ (m, 3 H, CH_2OP); 4.01 (q, 1 H, $CH_3J_{H,H} = 7.2$); 4.06 (q, 2 H, CH_2OC , $^3J_{H,H} = 7.2$)
4b	1220 (br.s,	1.14–1.21 (m, 6 H, $C\underline{H}_3CH_2OP + C\underline{H}_3CH_2OC$); 1.33 (d, 3 H, $C\underline{H}_3CH$, ${}^3J_{H,H} = 7.2$);
(B)	P=O),	1.60—1.72 (m, 2 H, CH ₂ CH ₂ CH ₂); 1.84—2.02 (m, 2 H, PCH ₂); 2.98—3.16 (m, 2 H, NCH _{2,cycle});
4-	1746 (C=O)	$3.87 - 3.98$ (m, 3 H, CH ₂ OP); 3.99 (q, 1 H, CH, ${}^{3}J_{H,H} = 7.2$); 4.06 (q, 2 H, CH ₂ OC, ${}^{3}J_{H,H} = 7.2$)
4c (A, B)	1212 (br.s, P=O),	1.00, 1.03 (both t, 6 H, 2 \underline{CH}_3CH_2N , ${}^3J_{H,H} = 7.2$); 1.21, 1.22 (both t, 3 H, \underline{CH}_3CH_2O , ${}^3J_{H,H} = 7.2$); 1.38, 1.39 (both d, 3 H, \underline{CH}_3CH , ${}^3J_{H,H} = 7.2$); 1.51–1.65, 1.66–1.81 (both m, 2 H, $\underline{CH}_2C\underline{H}_2CH_2$);
(A, D)	1742 (C=O)	1.36, 1.37 (both d, 3 H, $C_{13}CH$, $J_{H,H} = 7.27$, 1.31–1.03, 1.00–1.81 (both hi, 2 H, $C_{12}CH_{2}CH_{2}$), 1.82–2.15 (m, 2 H, PCH_{2}); 2.97–3.27 (m, 6 H, $PCH_{2}CH_{2}$) + $PCH_{2}CH_{2}$); 3.88 (dq, 0.5 H,
_	` '	CH, ${}^{3}J_{H,H} = 7.2$, ${}^{3}J_{P,H} = 6.8$); 4.00 (dq, 0.5 H, CH, ${}^{3}J_{H,H} = 7.2$, ${}^{3}J_{P,H} = 7.4$); 4.09, 4.11 (both q, 2 H, CH ₂ O, ${}^{3}J_{H,H} = 7.2$)
5a	1729 (C=O)	1.15 (t, 3 H, CH ₃ , ${}^{3}J_{H,H} = 7.2$); 2.43–2.54 (m, 2 H, CH ₂ CH ₂); 3.45 (dt, 2 H, NCH _{2,cycle} , ${}^{3}J_{H,H} = {}^{3}J_{P,H} = 7.4$); 3.79 (d, 2 H, CH ₂ CO, ${}^{3}J_{P,H} = 9.4$); 3.96–4.02 (m, 2 H, PCH ₂); 4.08 (q, 2 H, CH ₂ O, ${}^{3}J_{H,H} = 7.2$); 7.65–7.70, 7.75–7.79, 8.02–8.08 (all m, 10 H, 2 Ph)
6a	1090 (br.s,	1.13 (t, 3 H, CH ₃ , ${}^{3}J_{H,H} = 7.2$); 2.40–2.50 (m, 2 H, CH ₂ CH ₂ CH ₂); 3.09 (dt, 2 H, NCH _{2,cycle} ,
	$ClO_4^-),$	${}^{3}J_{H,H} = {}^{3}J_{P,H} = 7.6$; 3.71 (d, 2 H, CH ₂ CO, ${}^{3}J_{P,H} = 9.6$); 3.77—3.82 (m, 2 H, PCH ₂);
	1729 (C=O)	$4.05 \text{ (q, 2 H, CH}_2\text{O}, {}^{3}I_{H,H} = 7.2); 7.65-7.70, 7.77-7.88 \text{ (both m, 10 H, 2 Ph)}$
6b	1100 (br.s,	1.13 (t, 3 H, $C\underline{H}_3CH_2$, ${}^3J_{H,H} = 7.2$); 1.40 (d, 3 H, $C\underline{H}_3CH$, ${}^3J_{H,H} = 7.2$); 2.35–2.47,
	ClO ₄ ⁻), 1728 (C=O)	2.48–2.59 (both m, 1 H each, $CH_2CH_2CH_2$); 3.00–3.09, 3.15–3.26 (both m, 1 H each, NCH_2); 3.72–3.82 (m, 2 H, PCH_2); 3.91 (dq, 1 H, CH_2), $^3J_{H,H} = 7.2$, $^3J_{P,H} = 8.0$); 4.02 (q, 2 H, CH_2O , $^3J_{H,H} = 7.2$); 7.60–7.73, 7.76–7.89 (both m, 10 H, 2 Ph)
7a	1045, 1070, 1102,	1.24, 1.26 (both t, 6 H, 2 CH ₃ , ${}^{3}J_{H,H} = 7.2$); 1.65—1.73 (m, 2 H, CH ₂ CH ₂ CH ₂);
	1161 (P-O-C,	2.11–2.25 (m, 2 H, PCH ₂); 3.02 (t, 2 H, CH ₂ C $\underline{\text{H}}_2$ N, ${}^3J_{\text{H,H}} = 6.8$); 3.69 (c, 2 H, CH ₂ CO);
	PO ₂ ⁻), 1752 (C=O), 2000–3650 (br.s, NH ₂ ⁺)	3.87 (dq, 2 H, CH ₂ OP, ${}^{3}J_{H,H} = {}^{3}J_{P,H} = 7.2$); 4.20 (q, 2 H, CH ₂ OC, ${}^{3}J_{H,H} = 7.2$); 10.36 (br.s, 2 H, NH ₂)
7b	1047, 1064, 1101,	1.21, 1.26 (both t, 6 H, $C\underline{H}_3CH_2OP + C\underline{H}_3CH_2OC$, ${}^3J_{H,H} = 7.2$); 1.59 (d, 3 H, $C\underline{H}_3CH$,
	1134, 1153	$^{3}J_{H,H} = 7.2$); 1.62—1.74 (m, 2 H, CH ₂ CH ₂ CH ₂); 2.04—2.27 (m, 2 H, PCH ₂);
	$(P-O-C, PO_2^-),$	2.96 (t, 2 H, NCH ₂ , ${}^{3}J_{H,H} = 6.8$); 3.72 (q, 1 H, CH, ${}^{3}J_{H,H} = 7.2$); 3.89 (dq, 2 H, CH ₂ OP,
	1743 (C=O), 2000—3700 (br.s, NH ₂ ⁺)	${}^{3}J_{H,H} = {}^{3}J_{P,H} = 7.2$); 4.22 (q, 2 H, CH ₂ OC, ${}^{3}J_{H,H} = 7.2$); 11.15 (br.s, 2 H, NH ₂)

Table 4. Selected bond lengths (d) and bond angles (ω) in the crystal of 7a

Bond	d/Å	Angle	ω/deg	
P(1)— $O(1)$	1.486(2)	O(1)-P(1)-O(2)	118.2(1)	
P(1)— $O(2)$	1.503(2)	O(1)-P(1)-O(3)	106.1(1)	
P(1) - O(3)	1.608(3)	O(2)-P(1)-O(3)	109.3(1)	
P(1)-C(1)	1.805(4)	O(1)-P(1)-C(1)	110.1(1)	
O(3) - C(8)	1.445(4)	O(2)-P(1)-C(1)	108.1(2)	
O(4) - C(5)	1.193(4)	O(3)-P(1)-C(1)	104.1(1)	
O(5) - C(5)	1.328(4)	C(8)-O(3)-P(1)	120.0(2)	
O(5) - C(6)	1.448(4)	C(5)-O(5)-C(6)	117.9(3)	
N(1)-C(4)	1.473(4)	C(4)-N(1)-C(3)	114.2(3)	
N(1)-C(3)	1.491(4)			

in MeCN (7 mL) was added to a solution of chloride **5a** in MeCN (5 mL), which was prepared from **2a** (0.50 g, 3.0 mmol),

Et₃N (0.30 g, 3.0 mmol), and Ph₂PCl (0.67 g, 3.0 mmol), at 20 °C. The precipitate of NaCl was filtered off, MeCN was distilled off *in vacuo*, the residue was treated in CH_2Cl_2 to remove an excess of NaClO₄, the filtrate was concentrated *in vacuo*, and the residue was recrystallized. Perchlorate **6a** was isolated in a yield of 0.75 g.

1-(1-Ethoxycarbonylethyl)-2,2-diphenyl-1,2 λ^4 -azaphospholanium perchlorate (6b) was synthesized analogously to perchlorate 6a from 2b (0.97 g, 5.0 mmol), Et₃N (0.61 g, 6.0 mmol), Ph₂PCl (1.10 g, 5.0 mmol), and NaClO₄ (1.22 g, 10.0 mmol). The reaction mixture contained 83% of intermediate aminophosphine 3e, δ_P 55.0.* The perchlorate was purified by column chromatography (hexane—acetone as the eluent; a gradient from 98 : 2 to 50 : 50). The glassy product was isolated in a yield of 1.05 g.

^{*} For Ph_2PNEt_2 , δ_P 60.8.11

O-Ethyl 3-(*N*-ethoxycarbonylmethyl)aminopropylphosphonate (7a) and *O*-ethyl 3-(*N*-1-ethoxycarbonylethyl)aminopropylphosphonate (7b) were prepared in quantitative yields from azaphospholanes 4a and 4b upon storage at 20 °C in the presence of traces of moisture for 7 and 30 days, respectively.

X-ray diffraction study of compound 7a. Crystals of compound 7a were grown by slow crystallization from a CHCl₃-AcOEt mixture. At 110 K, colorless crystals of $7a \cdot \text{CHCl}_3 (C_{10} \text{H}_{21} \text{Cl}_3 \text{NO}_5 \text{P}) (M = 340.67) \text{ are monoclinic,}$ space group $P2_1/c$, a = 13.451(2), b = 9.102(1), c = 14.506(2) Å, $\beta = 100.679(3)^{\circ}$, $V = 1745.3(4) \text{ Å}^3$, Z = 4, $d_{\text{calc}} = 1.773 \text{ g cm}^{-3}$, $\mu(\text{Mo-K}\alpha) = 5.7 \text{ cm}^{-1}, F(000) = 962.$ The intensities of 11332 reflections were measured at 110 K on a Smart 1000 CCD diffractometer ($\lambda(Mo-K\alpha) = 0.71072 \text{ Å}$, ω scanning technique, $2\theta < 55^{\circ}$), and 4346 independent reflections ($R_{\text{int}} = 0.0528$) were used in the refinement. The structure was solved by direct methods and calculations of successive electron density maps. Analysis of difference Fourier maps showed that two chlorine atoms in the chloroform solvate molecule are disordered over two positions with occupancies of 0.4 and 0.6. All hydrogen atoms were located from difference electron density maps. The structure was refined against F_{hkl}^2 with anisotropic displacement parameters for all nonhydrogen atoms and isotropic displacement parameters for H atoms. The final R factors for 7a were $R_1 = 0.0594$ (calculated based on F_{hkl} for 4346 reflections with $I > 2\sigma(I)$), $wR_2 = 0.1218$, GOOF = 1.048. All calculations were carried out using the SHELXTL 5.10 program package.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 02-03-32478) and the Council on Grants of the President of the Russian Federation (Program for State Support of Leading

Scientific Schools of the Russian Federation, Grant NSh-1100.2003.3).

References

- M. Aladzheva, O. V. Bykhovskaya, D. I. Lobanov, P. V. Petrovskii, K. A. Lyssenko, and T. A. Mastryukova, *Khim. Geterotsikl. Soedin.*, 2002, 105 [Chem. Heterocycl. Compd., 2002 (Engl. Transl.)].
- I. M. Aladzheva, D. I. Lobanov, O. V. Bykhovskaya, P. V. Petrovskii, K. A. Lyssenko, and T. A. Mastryukova, *Hetero-atom Chem.*, 2003, 14, 506.
- 3. P. Kafarski and B. Lejzak, *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 1991, **63**, 193.
- Aminophosphonic and Aminophosphinic Acids, Eds V. P. Kukhar and H. R. Hudson, J. Wiley and Sons, New York, 2000.
- L. J. Bellamy, The Infrared Spectra of Complex Molecules, Methuen and Co. Ltd., London, 1960.
- V. P. Kukhar´ and V. A. Solodenko, *Usp. Khim.*, 1987, 56, 1504 [*Russ. Chem. Rev.*, 1987, 56 (Engl. Transl.)].
- C. Wasielewski, M. Topolski, and L. Dembkowski, *J. Prakt. Chem.*, 1989, 331, 507.
- 8. A. Zwierzak and A. Koziara, Tetrahedron, 1967, 23, 2243.
- D. Houalla, M. Sanchez, and R. Wolf, *Bull. Soc. Chim. Fr.*, 1965, 2368.
- Z. S. Novikova, S. Ya. Skorobogatova, and I. F. Lutsenko, Zh. Obshch. Khim., 1976, 46, 2213 [J. Gen. Chem. USSR, 1976, 46 (Engl. Transl.)].
- 11. L. Maier, Helv. Chim. Acta, 1969, 52, 858.

Received December 24, 2004; in revised form June 1, 2005